Azure Session Management

Think Different
7 min readDec 9, 2023

Photo by SHVETS production

Say we are going to create an application for customer management. Which requires faster interaction

from the customer to the application. So we need to manage the session with cache. Users can log in

from any device and use it seamlessly from any other device without any issues.

Below is an end-to-end solution for user login and session management using Azure Redis Cache,

API Gateway, Load Balancer, Azure App Service, and Azure Function serverless with a Flask

application in the backend.

In Azure, maintaining distributed session data typically involves using a combination of Azure services

and technologies.

Here are some best practices and technologies you can use to keep and manage distributed session data:

1. Azure Cache for Redis:

- Description: Azure Cache for Redis is a fully managed, in-memory data store service built on the

popular open-source Redis. It is commonly used to store and manage session data for web applications.

- Key Features:

- In-Memory Storage

- High Throughput

- Support for Advanced Data Structures

- Redis Pub/Sub for Messaging

- Usage Example:


# Using Azure SDK for Python to interact with Azure Cache for Redis

from azure.identity import DefaultAzureCredential

from azure.redis.cache import RedisCacheClient

credential = DefaultAzureCredential()

redis_cache = RedisCacheClient.from_connection_string(‘your_connection_string’,


# Set session data

redis_cache.set(‘session_key’, ‘session_value’)

# Get session data

session_data = redis_cache.get(‘session_key’)


2. Azure Cosmos DB:

- Description: Azure Cosmos DB is a multi-model, globally distributed database service.

It can be used to store and manage session data, offering high availability and low-latency access.

- Key Features:

- Multi-Model (Document, Graph, Table, etc.)

- Global Distribution

- Automatic and Instantaneous Scaling

- Usage Example:


# Using Azure SDK for Python to interact with Azure Cosmos DB

from azure.identity import DefaultAzureCredential

from azure.cosmos import CosmosClient

credential = DefaultAzureCredential()

cosmos_client = CosmosClient(‘your_cosmos_db_connection_string’, credential=credential)

# Access and manipulate session data using Cosmos DB APIs


3. Azure SQL Database:

- Description: Azure SQL Database is a fully managed relational database service. It can be used

to store session data, especially if your application relies on relational data models.

- Key Features:

- Fully Managed

- High Availability

- Scalability

- Usage Example:


# Using Azure SDK for Python to interact with Azure SQL Database

from azure.identity import DefaultAzureCredential

from azure.sql.database import SqlDatabaseClient

credential = DefaultAzureCredential()

sql_db_client = SqlDatabaseClient(‘your_sql_db_connection_string’, credential=credential)

# Access and manipulate session data using SQL queries


4. Azure Blob Storage:

- Description: Azure Blob Storage can be used to store session data in a distributed manner. It’s

suitable for scenarios where you need to store large amounts of unstructured data.

- Key Features:

- Scalable and Durable

- Cost-Effective

- Blob Storage Tiers for Data Lifecycle Management

- Usage Example:


# Using Azure SDK for Python to interact with Azure Blob Storage

from azure.identity import DefaultAzureCredential

from import BlobServiceClient

credential = DefaultAzureCredential()

blob_service_client = BlobServiceClient(‘your_blob_storage_connection_string’,


# Store and retrieve session data as blobs


5. Azure Functions for Session Management:

- Description: Azure Functions can be used to handle session-related logic. You can trigger functions

based on events such as user authentication or session expiration.

- Key Features:

- Serverless Architecture

- Event-Driven

- Scale Automatically

- Usage Example:

- Implement Azure Functions that respond to authentication or session-related events and interact

with the chosen data storage solution.

Best Practices:

- Use Secure Connections: Ensure that connections to your chosen data storage solutions are secured

using appropriate protocols and authentication mechanisms.

- Implement Session Expiry: Set policies for session data expiry and cleanup to manage resource usage


- Consider Data Sharding: Depending on the size and nature of your application, consider sharding or

partitioning your data for better performance and scalability.

- Monitor and Optimize: Regularly monitor and optimize your chosen solution based on usage patterns

and requirements.

Select the technology based on your application’s needs, scalability requirements, and the type of data

you are managing in the session. The examples provided use Python, but Azure SDKs are available

for various programming languages.

1. Azure Components Setup: Azure Redis Cache: — Create an Azure Redis Cache instance. — Obtain the connection string for the Redis Cache. Azure App Service (Web App): — Create an Azure App Service (Web App) to host your Flask application. — Configure the Flask application to connect to the Azure Redis Cache for session storage. Azure API Management (Optional): — Set up Azure API Management if you want to manage and secure your API. 2. Flask Application Setup: [below we will see in different use cases] Flask App with Flask-Session: — Create a Flask application with user authentication. — Use the `Flask-Session` extension to store session data in Redis. — Install required packages: ```bash pip install Flask Flask-Session redis ``` — Sample Flask App Code: ```python from flask import Flask, session from flask_session import Session import os app = Flask(__name__) # Configure session to use Redis app.config[‘SESSION_TYPE’] = ‘redis’ app.config[‘SESSION_PERMANENT’] = False app.config[‘SESSION_USE_SIGNER’] = True app.config[‘SESSION_KEY_PREFIX’] = ‘your_prefix’ app.config[‘SESSION_REDIS’] = ‘your_redis_cache_connection_string’ # Initialize the session extension Session(app) @app.route(‘/’) def index(): if ‘username’ in session: return f’Logged in as {session[“username”]}’ return ‘You are not logged in’ @app.route(‘/login/<username>’) def login(username): session[‘username’] = username return f’Logged in as {username}’ @app.route(‘/logout’) def logout(): session.pop(‘username’, None) return ‘Logged out’ if __name__ == ‘__main__’: app.secret_key = os.urandom(24) ``` 3. Azure App Service Deployment: — Deploy your Flask application to the Azure App Service. 4. API Gateway and Load Balancer (Optional): — If using Azure API Management or Load Balancer, configure them to route traffic to your App

Service. 5. JWT Token Management: Description: JSON Web Tokens (JWT) can be used for secure communication and session management between

the front end, Flask API, and Azure Other Services.

Configuration: Use a library like PyJWT in your Flask API to generate and validate JWT tokens. Include the JWT token in requests from the front end to the Flask API and from the Flask API to

the Azure other Service.

5. Testing: — Test user login and session management functionality by accessing the endpoints of your Flask

application. 6. Secure Communication: — Ensure that all communication between the client and your Flask application and between

the application and Azure Redis Cache is secured using HTTPS.

Note: — Replace `’your_redis_cache_connection_string’` with the actual connection string of your Azure

Redis Cache. — If using Azure API Management or Load Balancer, configure them based on your specific

requirements. — Adjust session management settings (e.g., session timeout, secure cookie settings) based on your

application’s needs.

Managing sessions using an API Gateway and Redis involves configuring the API Gateway to

handle user requests, directing traffic to backend services (like a Flask application), and using

Redis to store and manage session data. Below is a high-level guide on how this can be achieved:

1. API Gateway Configuration:

Azure API Management:

- Create an Azure API Management instance.

- Define API operations that correspond to your user authentication and session management


- Configure policies in API Management to manage session tokens, validate tokens, and route requests.

Policies Example (in API Management):


<! — Validate JWT token policy →


<base />

<validate-jwt header-name=”Authorization” failed-validation-httpcode=”401"

failed-validation-error-message=”Unauthorized. Access token is missing or invalid.”

require-expiration-time=”false” require-signed-tokens=”false” require-expiration-time=”true”>

<openid-config url=”https://your-authorization-server/.well-known/openid-configuration" />






<! — Set backend service and add session ID to request →


<base />

<set-backend-service base-url=”https://your-backend-service" />

<rewrite-uri template=”/{session-id}/{path}” />



2. Flask Application with Redis:

- Configure your Flask application to use Redis for session storage.

- Adjust the Flask app code provided in the previous example to handle requests from the API


3. Redis Session Management:

- Use Redis to store and manage session data. When a user logs in, store their session information

(e.g., user ID, session token) in Redis.

- Example Redis Commands (Python with `redis` library):


import redis

# Connect to Redis

redis_client = redis.StrictRedis(host=’your-redis-host’, port=6379, decode_responses=True)

# Set session data

redis_client.set(‘session_id’, ‘user_data’)

# Get session data

session_data = redis_client.get(‘session_id’)


4. Secure Communication:

- Ensure that communication between the API Gateway, Flask application, and Redis is secured.

Use HTTPS, secure Redis connections, and validate tokens in the API Gateway.

5. Testing:

- Test the integration by making requests to the API Gateway, which in turn routes requests to the

Flask application and manages sessions using Redis.

6. Load Balancer (Optional):

- If you have multiple instances of your Flask application, consider using a load balancer to distribute

traffic evenly.

7. JWT Token Management:

import jwt from flask import Flask, request app = Flask(__name__) SECRET_KEY = ‘your_secret_key’ @app.route(‘/generate_token/<user_id>/<app_id>’) def generate_token(user_id, app_id): # Check if the provided app_id is associated with the user_id # You can implement your logic here to verify the association if is_valid_association(user_id, app_id): token_payload = {‘user_id’: user_id, ‘app_id’: app_id} token = jwt.encode(token_payload, SECRET_KEY, algorithm=’HS256') return {‘token’: token} else: return {‘error’: ‘Invalid association between user_id and app_id’} @app.route(‘/verify_token’, methods=[‘POST’]) def verify_token(): token = request.json[‘token’] try: decoded_token = jwt.decode(token, SECRET_KEY, algorithms=[‘HS256’]) return {‘user_id’: decoded_token[‘user_id’], ‘app_id’: decoded_token[‘app_id’]} except jwt.ExpiredSignatureError: return {‘error’: ‘Token has expired’} except jwt.InvalidTokenError: return {‘error’: ‘Invalid token’} def is_valid_association(user_id, app_id): # Implement your logic to check if the provided app_id is associated with the user_id # For example, you might have a database where you store user and app associations # Return True if the association is valid, otherwise return False return True if __name__ == ‘__main__’:

In this example: The /generate_token/<user_id>/<app_id> endpoint now takes both user_id and app_id as parameters. There is a function is_valid_association that you should implement to check if the provided app_id

is associated with the given user_id. The generate_token endpoint generates a JWT token only if the association is valid. The /verify_token endpoint now returns both user_id and app_id from the decoded token. Remember to replace ‘your_secret_key’ with your actual secret key, and customize the

is_valid_association function based on your application’s logic for associating users with appIDs.

Important links:



Think Different

My name is Dhiraj Patra a Software architect for AI, ML, IoT microservices cloud applications. Love to learn and share.