Convert Docker Compose to Kubernetes

Dhiraj Patra
7 min readNov 9, 2024

--

If you already have a Docker Compose based application. And you may want to orchestrate the containers with Kubernetes. If you are new to Kubernetes then you can search various articles in this blog or Kubernetes website.

Here’s a step-by-step plan to migrate your Docker Compose application to Kubernetes:

Step 1: Create Kubernetes Configuration Files

Create a directory for your Kubernetes configuration files (e.g., k8s-config).

Create separate YAML files for each service (e.g., api.yaml, pgsql.yaml, mongodb.yaml, rabbitmq.yaml).

Define Kubernetes resources (Deployments, Services, Persistent Volumes) for each service.

Step 2: Define Kubernetes Resources

Deployment YAML Example (api.yaml)

YAML

apiVersion: apps/v1
kind: Deployment
metadata:
name: api-deployment
spec:
replicas: 1
selector:
matchLabels:
app: api
template:
metadata:
labels:
app: api
spec:
containers:
- name: api
image: <your-docker-image-name>
ports:
- containerPort: 8000

Service YAML Example (api.yaml)

YAML

apiVersion: v1
kind: Service
metadata:
name: api-service
spec:
selector:
app: api
ports:
- name: http
port: 8000
targetPort: 8000
type: ClusterIP

Repeat this process for other services (pgsql, mongodb, rabbitmq).

Step 3: Configure Persistent Storage

Create Persistent Volume Claims (PVCs) for databases.

Define StorageClass for dynamic provisioning.

Persistent Volume Claim YAML Example (pgsql-pvc.yaml)

YAML

apiVersion: v1
kind: PersistentVolumeClaim
metadata:
name: pgsql-pvc
spec:
accessModes:
- ReadWriteOnce
resources:
requests:
storage: 5Gi

StorageClass YAML Example (storage-class.yaml)

YAML

apiVersion: storage.k8s.io/v1
kind: StorageClass
metadata:
name: local-storage
provisioner: kubernetes.io/no-provisioner
volumeBindingMode: WaitForFirstConsumer

Step 4: Deploy to Kubernetes

Create namespace: kubectl create namespace <namespace-name>

Apply configuration files: kubectl apply -f <config-file>.yaml

Verify deployments: kubectl get deployments -n <namespace-name>

Verify pods: kubectl get pods -n <namespace-name>

Verify services: kubectl get svc -n <namespace-name>

Step 5: Expose Services

Create Ingress resources for external access.

Configure Ingress Controller (e.g., NGINX).

Ingress YAML Example (ingress.yaml)

YAML

apiVersion: networking.k8s.io/v1
kind: Ingress
metadata:
name: api-ingress
spec:
rules:
- host: <your-domain>
http:
paths:
- path: /
backend:
serviceName: api-service
servicePort: 8000

Step 6: Monitor and Maintain

Set up monitoring tools (e.g., Prometheus, Grafana).

Implement logging solutions (e.g., Fluentd, Elasticsearch).

Regularly update images and configurations.

Implementation Tools

kubectl: Kubernetes command-line tool.

kustomize: Configuration management tool.

Helm: Package manager for Kubernetes.

Additional Tips

Test locally with Minikube or Kind before deploying to production.

Use environment variables for configuration.

Implement rolling updates for zero-downtime deployments.

This migration plan provides a solid foundation. Adjust configurations according to your specific requirements.

Say I have a Docker Compose yaml file eg.

# version: '3.8'

services:
pgsql:
container_name: pgsql
image: postgres:15-alpine
volumes:
- postgres-data-volume:/var/lib/postgresql/data/
- ./app/init.sql:/docker-entrypoint-initdb.d/init.sql
ports:
- 5433:5432
environment:
- POSTGRES_USER=postgres
- POSTGRES_PASSWORD=password123
- POSTGRES_DB=lcnc_db_dev
networks:
- app-network
healthcheck:
test: ["CMD-SHELL", "pg_isready -U postgres"]
interval: 5s
retries: 5

# adminer:
# image: adminer
# container_name: pgsql-adminer
# ports:
# - 8080:8080
# depends_on:
# - pgsql
# networks:
# - app-network

app:
build:
context: ./app # Change context to the app folder
dockerfile: Dockerfile # Dockerfile name remains the same
container_name: app
env_file:
- ./.env.dev
environment:
- PYTHONPATH=/app
volumes:
- ./app:/app
- ./app/generated_files:/app/generated_files # Mount for generated backend files
- ./app/dart_files:/app/dart_files
ports:
- "8001:8001"
depends_on:
pgsql:
condition: service_healthy
redis:
condition: service_healthy
networks:
- app-network
deploy:
resources:
limits:
cpus: '2.00'
memory: 4G

redis:
image: redis:alpine
container_name: redis
ports:
- "6379:6379"
networks:
- app-network
healthcheck:
test: ["CMD", "redis-cli", "ping"]
interval: 5s
timeout: 3s
retries: 3
deploy:
resources:
limits:
cpus: '1.00'
memory: 2G
restart: always

redis_insight:
image: redis/redisinsight:latest
container_name: redis_insight
ports:
- "5540:5540"
networks:
- app-network
depends_on:
redis:
condition: service_healthy

celery_worker:
build:
context: ./app
dockerfile: Dockerfile.celery-worker
container_name: celery_worker
environment:
- PYTHONPATH=/app
- BROKER_URL=redis://redis:6379/0
- RESULT_BACKEND=redis://redis:6379/0
- PREFETCH_MULTIPLIER=1
- MAX_MEMORY_PER_CHILD=512
depends_on:
- app
- redis
- pgsql
volumes:
- ./app:/app
- ./app/generated_files:/app/generated_files
- ./app/dart_files:/app/dart_files
networks:
- app-network
restart: unless-stopped

volumes:
postgres-data-volume: # Named volume for PostgreSQL data

networks:
app-network:
driver: bridge

Here’s the equivalent Kubernetes configuration for the provided Docker Compose file:

Step 1: Create Namespace

Bash

kubectl create namespace dev-namespace

Step 2: PostgreSQL Deployment and Service

YAML

# pgsql-deployment.yaml
apiVersion: apps/v1
kind: Deployment
metadata:
name: pgsql-deployment
namespace: dev-namespace
spec:
replicas: 1
selector:
matchLabels:
app: pgsql
template:
metadata:
labels:
app: pgsql
spec:
containers:
- name: pgsql
image: postgres:15-alpine
ports:
- containerPort: 5432
volumeMounts:
- name: postgres-data-volume
mountPath: /var/lib/postgresql/data/
- name: init-sql-volume
mountPath: /docker-entrypoint-initdb.d/
env:
- name: POSTGRES_USER
value: "postgres"
- name: POSTGRES_PASSWORD
value: "password123"
- name: POSTGRES_DB
value: "lcnc_db_dev"
volumes:
- name: postgres-data-volume
persistentVolumeClaim:
claimName: postgres-pvc
- name: init-sql-volume
configMap:
name: init-sql-cm
strategy:
type: Recreate

# pgsql-service.yaml
apiVersion: v1
kind: Service
metadata:
name: pgsql-service
namespace: dev-namespace
spec:
selector:
app: pgsql
ports:
- name: pgsql
port: 5432
targetPort: 5432
type: ClusterIP

# Create ConfigMap for init.sql
kubectl create configmap init-sql-cm --from-file=init.sql -n dev-namespace

# Create Persistent Volume Claim
# postgres-pvc.yaml
apiVersion: v1
kind: PersistentVolumeClaim
metadata:
name: postgres-pvc
namespace: dev-namespace
spec:
accessModes:
- ReadWriteOnce
resources:
requests:
storage: 5Gi

Step 3: Redis Deployment and Service

YAML

# redis-deployment.yaml
apiVersion: apps/v1
kind: Deployment
metadata:
name: redis-deployment
namespace: dev-namespace
spec:
replicas: 1
selector:
matchLabels:
app: redis
template:
metadata:
labels:
app: redis
spec:
containers:
- name: redis
image: redis:alpine
ports:
- containerPort: 6379
strategy:
type: Recreate

# redis-service.yaml
apiVersion: v1
kind: Service
metadata:
name: redis-service
namespace: dev-namespace
spec:
selector:
app: redis
ports:
- name: redis
port: 6379
targetPort: 6379
type: ClusterIP

Step 4: App Deployment and Service

YAML

# app-deployment.yaml
apiVersion: apps/v1
kind: Deployment
metadata:
name: app-deployment
namespace: dev-namespace
spec:
replicas: 1
selector:
matchLabels:
app: app
template:
metadata:
labels:
app: app
spec:
containers:
- name: app
image: <your-docker-image-name>
ports:
- containerPort: 8001
volumeMounts:
- name: app-volume
mountPath: /app
- name: generated-files-volume
mountPath: /app/generated_files
- name: dart-files-volume
mountPath: /app/dart_files
env:
- name: PYTHONPATH
value: "/app"
strategy:
type: Recreate
volumes:
- name: app-volume
persistentVolumeClaim:
claimName: app-pvc
- name: generated-files-volume
emptyDir: {}
- name: dart-files-volume
emptyDir: {}

# app-service.yaml
apiVersion: v1
kind: Service
metadata:
name: app-service
namespace: dev-namespace
spec:
selector:
app: app
ports:
- name: app
port: 8001
targetPort: 8001
type: ClusterIP

# Create Persistent Volume Claim
# app-pvc.yaml
apiVersion: v1
kind: PersistentVolumeClaim
metadata:
name: app-pvc
namespace: dev-namespace
spec:
accessModes:
- ReadWriteOnce
resources:
requests:
storage: 2Gi

Step 5: Celery Worker Deployment

YAML

# celery-worker-deployment.yaml
apiVersion: apps/v1
kind: Deployment
metadata:
name: celery-worker-deployment
namespace: dev-namespace
spec:
replicas: 1
selector:
matchLabels:
app: celery-worker
template:
metadata:
labels:
app: celery-worker
spec:
containers:
- name: celery-worker
image: <your-docker-image-name>
volumeMounts:
- name: app-volume
mountPath: /app
- name: generated-files-volume
mountPath: /app/generated_files
- name: dart-files-volume
mountPath: /app/dart_files
env:
- name: PYTHONPATH
value: "/app"
- name: BROKER_URL
value: "redis://redis-service:6379/0"
- name: RESULT_BACKEND
value: "redis://redis-service:6379/0"
strategy:
type: Recreate
volumes:
- name: app-volume
persistentVolumeClaim:
claimName: app-pvc
- name: generated-files-volume
emptyDir: {}
- name: dart-files-volume
emptyDir: {}

Step 6: Apply Kubernetes Configuration

Bash

kubectl apply -f pgsql-deployment.yaml
kubectl apply -f pgsql-service.yaml
kubectl apply -f redis-deployment.yaml
kubectl apply -f redis-service.yaml
kubectl apply -f app-deployment.yaml
kubectl apply -f app-service.yaml
kubectl apply -f celery-worker-deployment.yaml

Step 7: Verify Deployments

Bash

kubectl get deployments -n dev-namespace
kubectl get pods -n dev-namespace
kubectl get svc -n dev-namespace

This Kubernetes configuration mirrors the Docker Compose file. Adjust image names, resource requests and other parameters as necessary.

Additional Tips

Use Secret resources for sensitive data (e.g., passwords).

Implement Horizontal Pod Autoscaling (HPA) for dynamic scaling.

Monitor cluster performance with Prometheus and Grafana.

Here are examples of applying Kubernetes in Google Cloud and Azure:

Google Cloud (GKE)

Step 1: Create a GKE Cluster

Create a new project: gcloud projects create <project-name>

Enable Kubernetes Engine API: gcloud services enable container.googleapis.com

Create a cluster: gcloud container clusters create <cluster-name> — zone <zone> — num-nodes 3

Step 2: Deploy Application

Create Deployment YAML file (e.g., deployment.yaml)

Apply Deployment: kubectl apply -f deployment.yaml

Expose Service: kubectl expose deployment <deployment-name> — type LoadBalancer — port 80

Step 3: Verify Deployment

Get Cluster credentials: gcloud container clusters get-credentials <cluster-name> — zone <zone>

Verify pods: kubectl get pods

Verify services: kubectl get svc

GKE Example Commands

Bash

# Create project and enable API

gcloud projects create my-project

gcloud services enable container.googleapis.com

# Create GKE cluster

gcloud container clusters create my-cluster — zone us-central1-a — num-nodes 3

# Deploy application

kubectl apply -f deployment.yaml

# Expose service

kubectl expose deployment my-app — type LoadBalancer — port 80

# Verify deployment

gcloud container clusters get-credentials my-cluster — zone us-central1-a

kubectl get pods

kubectl get svc

Azure (AKS)

Step 1: Create AKS Cluster

Create resource group: az group create — name <resource-group> — location <location>

Create AKS cluster: az aks create — resource-group <resource-group> — name <cluster-name> — node-count 3

Step 2: Deploy Application

Create Deployment YAML file (e.g., deployment.yaml)

Apply Deployment: kubectl apply -f deployment.yaml

Expose Service: kubectl expose deployment <deployment-name> — type LoadBalancer — port 80

Step 3: Verify Deployment

Get Cluster credentials: az aks get-credentials — resource-group <resource-group> — name <cluster-name>

Verify pods: kubectl get pods

Verify services: kubectl get svc

AKS Example Commands

Bash

# Create resource group and AKS cluster

az group create — name my-resource-group — location eastus

az aks create — resource-group my-resource-group — name my-aks-cluster — node-count 3

# Deploy application

kubectl apply -f deployment.yaml

# Expose service

kubectl expose deployment my-app — type LoadBalancer — port 80

# Verify deployment

az aks get-credentials — resource-group my-resource-group — name my-aks-cluster

kubectl get pods

kubectl get svc

Additional Tips

Use managed identities for authentication.

Implement network policies for security.

Monitor cluster performance with Azure Monitor or Google Cloud Monitoring.

Kubernetes Deployment YAML Example

YAML

apiVersion: apps/v1
kind: Deployment
metadata:
name: my-app
spec:
replicas: 3
selector:
matchLabels:
app: my-app
template:
metadata:
labels:
app: my-app
spec:
containers:
- name: my-app
image: <your-docker-image-name>
ports:
- containerPort: 80

--

--

Dhiraj Patra
Dhiraj Patra

Written by Dhiraj Patra

AI Strategy, Generative AI, AI & ML Consulting, Product Development, Startup Advisory, Data Architecture, Data Analytics, Executive Mentorship, Value Creation

No responses yet