Develop a Customize LLM Agent

Dhiraj Patra
2 min readJun 24, 2024

--

If you’re interested in customizing an agent for a specific task, one way to do this is to fine-tune the models on your dataset.

For preparing dataset you can see this article.

1. Curate the Dataset

- Using NeMo Curator:

- Install NVIDIA NeMo: `pip install nemo_toolkit`

- Use NeMo Curator to prepare your dataset according to your specific requirements.

2. Fine-Tune the Model

- Using NeMo Framework:

1. Setup NeMo:

```python

import nemo

import nemo.collections.nlp as nemo_nlp

```

2. Prepare the Data:

```python

# Example to prepare dataset

from nemo.collections.nlp.data.text_to_text import TextToTextDataset

dataset = TextToTextDataset(file_path=”path_to_your_dataset”)

```

3. Fine-Tune the Model:

```python

model = nemo_nlp.models.NLPModel.from_pretrained(“pretrained_model_name”)

model.train(dataset)

model.save_to(“path_to_save_fine_tuned_model”)

```

- Using HuggingFace Transformers:

1. Install Transformers:

```sh

pip install transformers

```

2. Load Pretrained Model:

```python

from transformers import AutoModelForSeq2SeqLM, AutoTokenizer, Trainer, TrainingArguments

model_name = “pretrained_model_name”

model = AutoModelForSeq2SeqLM.from_pretrained(model_name)

tokenizer = AutoTokenizer.from_pretrained(model_name)

```

3. Prepare the Data:

```python

from datasets import load_dataset

dataset = load_dataset(“path_to_your_dataset”)

tokenized_dataset = dataset.map(lambda x: tokenizer(x[‘text’], truncation=True, padding=True), batched=True)

```

4. Fine-Tune the Model:

```python

training_args = TrainingArguments(

output_dir=”./results”,

evaluation_strategy=”epoch”,

learning_rate=2e-5,

per_device_train_batch_size=16,

per_device_eval_batch_size=16,

num_train_epochs=3,

weight_decay=0.01,

)

trainer = Trainer(

model=model,

args=training_args,

train_dataset=tokenized_dataset[‘train’],

eval_dataset=tokenized_dataset[‘validation’]

)

trainer.train()

model.save_pretrained(“path_to_save_fine_tuned_model”)

tokenizer.save_pretrained(“path_to_save_tokenizer”)

```

3. Develop an Agent with LangChain

1. Install LangChain:

```sh

pip install langchain

```

2. Load the Fine-Tuned Model:

```python

from transformers import AutoModelForSeq2SeqLM, AutoTokenizer

from langchain.llms import HuggingFaceLLM

model = AutoModelForSeq2SeqLM.from_pretrained(“path_to_save_fine_tuned_model”)

tokenizer = AutoTokenizer.from_pretrained(“path_to_save_tokenizer”)

llm = HuggingFaceLLM(model=model, tokenizer=tokenizer)

```

3. Define the Agent:

```python

from langchain.agents import Agent

agent = Agent(

llm=llm,

tools=[“tool1”, “tool2”], # Specify the tools your agent will use

memory=”memory_option”, # Specify memory options if any

)

```

4. Use the Agent:

```python

response = agent(“Your prompt here”)

print(response)

```

This process guides you through curating the dataset, fine-tuning the model, and integrating it into the LangChain framework to develop a custom agent.

You can get more details guide links following.

https://huggingface.co/docs/transformers/en/training

https://github.com/NVIDIA/NeMo-Curator/tree/main/examples

https://docs.smith.langchain.com/old/cookbook/fine-tuning-examples

--

--

Dhiraj Patra
Dhiraj Patra

Written by Dhiraj Patra

AI Strategy, Generative AI, AI & ML Consulting, Product Development, Startup Advisory, Data Architecture, Data Analytics, Executive Mentorship, Value Creation

No responses yet